
OSS Quality as Argument    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

 

OSS Quality as Argument: 

The Impact of Member Roles,  

Motivations, and Business Models 

Benno Luthiger, ETH Zurich, Switzerland 

Carola Jungwirth, University of Passau, Germany 

Abstract 
 

The attitude of companies towards open source software has significantly 

changed. Few years ago, the quality of open source software has often been 

challenged, based on the rule of thumb “If something has no price, it also has no 

value!” Nowadays, however, the most stated reason why companies use open 

source software is its apparently high quality. We present the idea that a system 

of incentives of both private programmers with their different motives to 

participate and companies paying their programmers for contributing to OSS, 

are responsible for the software quality—even if all programmers do not pursue a 

common purpose. The chapter delivers a conceptual framework from an 

economic perspective showing that every stakeholder can provide valuable input 

to the success of an open source project. Crowding out between contributors with 

different motivations does not necessarily exist even if companies with monetary 

intentions participate. Therefore, we assume OSS as an attractive forum for 

different interests that can seminally intertwine, while quality software is 

generated nearly as a by-product. 



   Luthiger & Jungwirth 

 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

Introduction 

Open source developers produce software—frequently of high quality—that is 

freely available for everyone. For computer users that are accustomed to 

purchasing outright the software they use, this might sound puzzling: Is it 

possible that something free is at the same time good? Therefore, such computer 

users, assuming a trade-off, might doubt the quality of open source software and 

hence refrain from using such software. Computer users that apply software in a 

business context, for example, may abstain from using open source software even 

if such software is available at no cost if they are not confident about the quality 

of such software. Using software in a business context means a heavy investment, 

even if the license fee of the software used is null because considerable TCO 

(total costs of ownership) exists. Integrating certain software in the business 

process leads to a lock-in situation in a manifold way (e.g., investments in human 

capital, system reorganisation, etc.). Thus, crucial for the future success of open 

source software is not the fact that there is no associated licensing fee, but the 

question of the quality of such software. 

What can we learn about open source software if we look at the developer’s 

motivations? Understanding the motivations of open source developers allows us 

to assess the importance software quality has for these software developers and to 

comprehend the conditions needed for that software quality to be realised. This 

insight might increase confidence in the quality and sustainability of open source 

software and, as a result, lower the barrier to use it. 

Although examples of high quality open source software are well known, open 

source still has the connotative impression of being the play area of hobbyists. 

This impression is not necessarily far from the truth, insofar as most of the open 

source projects existing on open source platforms (e.g., SourceForge) are indeed 

the outcome of hobbyists, as various studies show (see Krishnamurthy, 2002; 

Weiss, 2005, etc.). However, the numbers in our FASD study1 and in other 

studies (e.g., Lakhani & Wolf, 2003) indicate that professional developers who 

are compensated for their work do a significant share of open source software 

development. Indeed, the commitment for open source projects primarily occurs 

in their spare time; on the other hand, the share open source projects developed 

within working time amounts to a considerable 42%. Professional open source 

projects might be underrepresented in previous studies, like our FASD study, 

because firms can afford their own project infrastructure and, therefore, are not 

dependent on the open source platforms we have addressed in our study. 



OSS Quality as Argument    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

This recognition shows that the motivations on the programmer level on the one 

side and the motivations on the firm level on the other side should be 

distinguished. The former concerns developers who commit themselves to 

contributing to open source projects. The latter concerns developers being 

motivated simply by the fact that they are advised to create open source software 

and they are paid to do so. In this case the interesting question is why their 

employers pay them to work on open source software. This should be a logical 

consequence of the business models for firms that build on sponsoring open 

source projects. However, their motivation should be discussed later. First, we 

analyse motivations on the programmers’ level. 

Analysing Motivations on the Programmers’ Level 
 

One way to resolve the puzzle concerning the open source phenomenon is to 

focus on the programmer as “prosumer” (see Toffler, 1980). A prosumer is a user 

who adapts and refines the software according to his or her needs. Von Hippel 

and von Krogh (2002) showed that such a point of view provides a substantial 

insight into the understanding of an open source development process. 

And it also allows for maintaining the notion of rational actors. Prosumers do not 

act less rational then software firms investing in software. Both types of actors, 

the prosumer and the software firm, release the software under an open source 

license, if the benefits exceed the costs of such an action. Nevertheless, the 

prosumer’s context differs fundamentally from a software firm’s context. 

Software firms are in stiff competition against each other. In such a situation, 

uncompensated code releases imply high opportunity costs: By revealing the 

source code, software firms give away their business secret and, therefore, 

abandon a competitive advantage.  

User-developers face a different situation. The interaction of prosumers is 

determined by only low rivalry conditions and, therefore, by low opportunity 

costs. Additionally, the direct costs of giving away the source code are rather 

small considering the Internet. However, small expenses on the cost side cannot 

explain prosumers’ behavior. Even with small costs, it would be superior for 

rational actors to participate as free riders in the open source area and profit from 

others’ work rather than to engage actively in the creation of such software. 

Therefore, there must be a selective incentive for contributors—a benefit that 

only persons who engage can reap. However, in low cost situations only a small 

selective advantage is needed and the free revealing of the source code is 

favourable for the user-developer. To understand the open source phenomenon on 



   Luthiger & Jungwirth 

 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

the programmers’ level, we have to identify and quantify the possible selective 

advantages of open source developers: 

A lot of work is done in this field and qualitative studies have identified a variety 

of motivations that can serve as selective incentives for open source developers. 

Use 

The simplest reason to engage in an open source project is that developers need a 

certain application. This is a straightforward implementation of the prosumer 

model: An actor has a problem that he or she could solve via suitable software. 

Therefore, they create that software or adapt existing open source software 

according to need. In the study of Lakhani and Wolf (2003), this motive was 

named most often. In our study we asked the respondents why they started their 

open source engagement. Running a cluster analysis, we could identify three 

distinct types of open source developers and one of them is clearly motivated by 

pragmatic reasons. The share of pragmatic developers in our sample amounted to 

about one-fourth. 

Reputation and Signalling 

 

In his essay, “Homesteading the Noosphere,” part of the well-known trilogy “The 

cathedral and the bazaar” (2000), Raymond describes how norms and taboos 

affect the gain of reputation within an open source community. Raymond 

demonstrates that code forking and, above all, the removal of the contributors’ 

names from the applications’ credit files are strongly proscribed. The awareness 

of the open source community towards these norms makes sense, considering the 

gain of reputation. Without these norms, it would be hard to track which 

contribution comes from which person and this would hamper reputation 

building. Raymond concludes that these norms allow for a reputation game that is 

essential for the open source movement. It rewards the productive, creative, 

innovative contributors and thus founds the success of the open source 

movement. 

Lerner and Tirole (2002) interpret the reputation game as signalling incentive. 

According to their view, the disclosure of the source code in combination with 

the specific norms governing the open source community as described by 

Raymond is quite attractive for developers for the following reason. It is very 

easy tracing the codes of developers back to them and assessing the quantity and 



OSS Quality as Argument    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

quality of their contributions. A developer’s status within the project depends on 

their performance and, therefore, reputation reflects skills, talent, engagement, 

and all other important characteristics from an employer’s point of view. This 

coherence allows programmers to convert their reputations into cash, for 

example, by finding a better job offering or by better access to venture capital. 

One might ask why a firm does not assess the quality of the programmers’ skills 

and talent by itself. However, this is difficult for a person who is not familiar with 

a special field. If a person’s reputation is a valid indicator of his or her talent, this 

reputation can act as a signal in the sense described above: From the open source 

project and the person’s status within this project, a potential employer can make 

valid conclusions of the person’s talent. Signalling has the best effect in an area 

with great technical challenges, where the relevant community (e.g., the peer 

group) is technically experienced, able to distinguish between good and 

outstanding performance, and capable of esteeming performance and ability 

(Weber, 2000; Franck & Jungwirth, 2003). In the case of open source, these 

conditions are exceedingly accomplished. Hann et al. (2004) was able to 

empirically prove that the status achieved in open source projects under the 

Apache umbrella had significantly positive effects on the programmer’s job 

income. 

Community Identification 

 

Persons perceive themselves not only or not always as independently acting 

individuals, but they also feel and define themselves as members of a specific 

group. Therefore, they behave according to the norms and standards of this 

group. Identification with a group and its goals can explain an individual’s 

actions (Kollock & Smith, 1996). Hertel et al. (2003) examined empirically 

whether this phenomenon does play a role even in the open source area. In their 

study among Linux developers, they asked the programmers about various 

aspects of their activity and correlated this information with data about the 

developers’ engagement. Indeed, using statistical methods, they could verify that 

a significant amount of the developers’ engagement can be explained by their 

identification with the developer team.  

This result has been affirmed by the study of Lakhani and Wolf (2003). In their 

hacker survey they examined how group identification affects the developer’s 

time engagement. They observed a significant positive effect. Even in the FASD 

study, we identified a type of contributor motivated by the social context. About 

one-third of the respondents in the FASD sample belonged to this type (Franck, 

Jungwirth, & Luthiger, 2005). 



   Luthiger & Jungwirth 

 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

Learning 

 

Each social movement offers its participants the possibility to learn and to acquire 

special capabilities. This aspect is even more pronounced for the engagement in 

an open source project. Open source projects, furnished with the appeal of 

programming at the edge of technological innovation, promise to offer 

extraordinary learning opportunities. In addition, the peer review system specific 

for the open source area provides timely feedback (e.g., identification of software 

bugs or suggestions for code improvements) that increases the contributor’s 

learning effect. The desire to improve one’s skills as a software developer 

appears in various studies (see Ghosh et al., 2002; Lakhani & Wolf, 2003; Hars & 

Ou, 2001, e.g.). 

Altruism 

Programmers sometimes engage in an open source project with motivations that 

can be described as altruistic. They contribute, for example, because they use 

open source software and, thus, feel the obligation to reciprocate. In other cases, 

they contribute with the intention to aid other people, for example, in developing 

countries because freely available software helps to bridge the digital divide. In 

this case, the utility of the open source programmer is increasing with the other’s 

benefit (pure altruism) whereas in the first case the programmer might feel a 

“warm glow,” indicating impure altruism, by doing the right thing (Haruvy et al., 

2003). In any case, such contributions can be interpreted as donations. The logic 

of this interpretation is that making the contribution or not does not have any 

traceable consequences for programmers themselves. On the other side, the open 

source project profits from such contributions. 

According to the study of Lakhani and Wolf (2003), about one-third of the 

respondents indicate such motives as relevant for their engagement. Interestingly, 

Lakhani and Wolf could show via cluster analysis that the ideologically-based 

argument that software shall be free is close to the reciprocity motive. That would 

mean that such ideological motives could have an altruistic connotation too. 

Fun 

 



OSS Quality as Argument    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

Most of the persons developing software perceive this activity as exceedingly 

fulfilling: “Programming [then] is fun because it gratifies creative longings built 

deep within us and delights sensibilities we have in common with all men” ( 

Brooks, 1995, p. 8). Torvalds (Ghosh, 1998, p. 9) said as follows: “[M]ost of the 

good programmers do programming not because they expect to get paid or get 

adulation, but because it is fun to program. […] The first consideration for 

anybody should really be whether you’d like to do it even if you got nothing at all 

back.” Thus, developing software can have an immediate benefit for the 

programmers that can be named homo ludens payoff in accordance with Huizinga 

(2001). 

Open source developers program in their spare time because they consume “fun” 

with this activity and, therefore, open source software is a by-product of this 

activity. Indeed, several empirical studies corroborated the importance of fun as 

motivation to engage in open source projects. As an example, the study by 

Lakhani and Wolf (2003) showed that 73% of the open source developers 

experience flow while programming. Although this explanation sounds 

reasonable, it’s not enough to justify the existence of open source software. The 

fact that programming can be a fun activity independent of compensation 

explains only the existence of software developers in general. However, we have 

to take into consideration that one can earn money by developing software. If we 

are dealing with rational software developers, the possibility to earn money is 

without doubt an additional utility. Consequently, we do not expect anyone, at 

least no rational actor, to program in his or her spare time anymore, because 

having fun and earning money is mutatis mutandis better then only having fun. 

Therefore, if we want to explain the existence of open source software by the fun 

motive, we have to postulate that having fun while programming is somewhat 

substitutive to earning money with software development. The open source 

development has to offer better opportunities to enjoy programming then working 

in the commercial software area. 

In the FASD study, we focused exclusively on the fun motive. The aim of the 

study was to quantify the importance of fun as motive to engage in open source 

projects. In addition, we also tried to verify the hypothesis that programming 

provides more fun in an open source context then under commercial conditions 

(Luthiger, 2006). 

To quantify the importance of fun, we looked at the variation in the open source 

developers’ engagement and inquired how much of this variation can be 

explained by the variation of fun the developers enjoy while programming. Thus, 

the task to quantify the importance of fun becomes an exercise in regression 

analysis. To master this task, we developed a simple model combining the open 

source developer’s engagement with the fun he or she enjoys and the amount of 

spare time he or she has. We used a production function whose input factors, in 

our case the fun and spare time, have diminishing marginal effects on the output 



   Luthiger & Jungwirth 

 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

factor, the programmer’s engagement. This can be achieved with quadratic terms 

having negative signs: E = c + a1 * F - a2 * F2 + b1 * T – b2 * T2 

where 

E: voluntary, unpaid engagement 

F: fun T: spare 

time a1, a2, b1, 

b2 > 0 

To operationalise the fun developers generally have while programming, we used 

the flow construct introduced by Csikszentmihalyi. For the developers’ 

engagement we used two measures: First we determined the amount of hours the 

developers spend in their spare time for open source. Second, we asked for their 

willingness for future engagement in open source projects. 

The first regression analysis yielded the result that flow contributes significantly 

only linearly to the amount of time the developer spends for open source, 

whereas concerning the availability of spare time, both terms contribute 

significantly. This means that the joy of programming does not wear off: Each 

additional unit of fun is transferred linearly into additional commitment. Another 

result is that the amount of time spent is controlled about ten times more by the 

available spare time than by the joy of programming. Obviously, the limiting 

factor concerning the amount of time spent is not the fun experienced while 

programming but the available time of the programmers. With this model, we're 

able to explain 33% of the variance in the amount of time the open source 

developers contribute.



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

If we look at the determinants considering the willingness to engage for open 

source in the future, we get another interesting result. Again, flow contributes to 

the model significantly only with the linear term. This time, however, the 

available spare time does not contributes to any of the terms significantly. We 

conclude that when open source developers evaluate their willingness for future 

engagement, they take into consideration only how much they enjoy 

programming and neglect completely whether they will have the time needed for 

future engagement. With this model, we’re able to explain 27% of the 

programmer’s open source engagement. 

The assumption that programming in an open source project provides more fun 

than doing this activity under commercial conditions can be tested by comparing 

the answers of our survey addressing open source developers with those of 

software developers working in Swiss software firms. We found out that indeed 

the open source developers enjoyed significantly more fun while programming 

than commercial software developers. To allow for a systematic bias coming 

from the comparison of two different samples, we looked for a possibility to 

compare the experience of flow within the sample of open source developers. 

Based on the answers about how much of their time they are paid for 

programming, we have been able two identify two sub samples. We named the 

first “professionals” because this sample consisted of open source developers that 

are paid for more than 90%t of their working time in open source projects, 

whereas the second sample, the “hackers,” are paid for less than 10% of their 

time spent for open source projects. Therefore, our “hackers” stand for the 

classical open source developers, the “hobbyists,” spending their spare time to 

develop open source software. The comparison of these two samples yielded 

again that the “hackers” experienced significantly more fun than the 

“professionals.” This result confirms our conjecture that fun is an important 

driver for the creation of open source software.  

Analysing Motivations on the Firm’s Level 
 

Because of their own infrastructure, open source activities of firms are 

underrepresented in the FASD study as well as in other studies. Nevertheless, 

evidence exists that paid software developers create a significant part of open 

source software. What incentives do employers have to pay software developers 

who create a product that is given away for free? 

There are two main reasons for an employer to do so: The first reason is that the 

firm needs a certain software solution for its own use. By opening the source 



   Luthiger & Jungwirth 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

code application or joining an open source project, the firm can lower costs and 

spread risks. The second reason is that the firm has a business model that builds 

on open source software. 

Use Value 

 

Software developed in-house that has use value for the company and that does 

not represent any core competency of the company should not cause any losses if 

the source code is opened. In fact, Raymond (1999) identified two cases where a 

company can win by doing so. 

If a firm operates a Web platform, for example, for selling low margin services or 

products, it usually needs a Web server, some kind of content management 

system, and a database. Nowadays, no firm would even think to develop such 

applications or to pay for the development of such applications. Instead, the firm 

takes one of those excellent applications released under an open source license 

and adjusts it to its specific needs. But then, to a certain extent the firm becomes 

dependent on the continuing existence of this software. Because of its 

investments in the software, the firm is strongly interested in its survival. In such 

a situation, it could be reasonable to improve the application’s attractiveness and, 

hence, its user base, by code donations that expand the software’s stability or 

functionality, for example.  

Besides this possibility to lower costs, there is also the prospect of risk spreading 

by open sourcing code. Raymond (1999) exemplified this option by a story from 

a firm that developed in-house a special print spooling application. After putting 

the application into operation, the firm decided to release this print spooler under 

an open source license. The firm’s ulterior motive was to stimulate an 

improvement process for the software. By releasing the code, noticeable 

problems become evident, other applications are found, and missing features are 

developed. In essence, the community should be interested in the software and 

further develop it. Without this move, the firm would have run the risk of letting 

the application become unmaintained, that is, to let it gradually fall out of sync 

with technological progress. By releasing the application, the firm could spread 

the application’s maintenance over various independent contributors, thus 

minimizing the risk that the application goes out of date. If different independent 

stakeholders are interested in the survival of a software application, the 

probability grows that the software is kept up to the status quo of the 

technological progress, whereas none of the different stakeholders can privately 

appropriate the code.  

Business Models 

 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

Open source software that is freely available poses a serious threat to the sales 

value of software. Nevertheless, good reasons exist why it can be worthwhile for 

firms paying developers to create free software. So-called “business models” 

describe different situations where firms profit from investing in open source 

projects. The following discussion bases heavily on the considerations made by 

Raymond (1999); Hecker (1999); Leiteritz (2004); O’Mahony et al. (2005); 

Weber (2004); Kalla (2005); Chesbrough (2007): 

• Use: A company can use open source software if this software provides 

functionality the company needs for their products or services. Thus, this 

company does not have to invest money to develop the required software by 

itself. Instead, the company can rely on the proven quality of the existing 

software and limit their investments to adapt the software to fit their specific 

needs (Chesbrough, 2007). IBM’s use of the Linux operating system for 

their servers and Google’s use of the Python software language for their 

services are examples this use case. 

• Open source application provider: Such application providers create 

software that they distribute under the terms of an open source license. An 

“Open source application provider” is a generic term, in which various 

variations of this business model exist. Most of them succeed based on the 

existence of a complementary product or service (e.g., “Loss Leader,” “Sell 

it, Free it,” “Widget Frosting,” “Service enabler”). The basic pattern to 

generate profits is that by giving away the software for free, the company 

enlarges the application’s user base thus increasing the market for the 

complementary product. 

• Loss leader: In the “Loss Leader” model, an application is given away as 

open source software to improve the company’s position in the software 

market. According to Hecker, the open source product could increase the 

sales of the complementary software product “by helping build the overall 

vendor brand and reputation, by making the traditional products more 

functional and useful (in essence adding value to them), by increasing the 

overall base of developers and users familiar with and loyal to the vendor’s 

total product line” (Hecker, 1999). Netscape’s open source strategy with the 

Netscape/Mozilla Web browser is an example of this business model. 

• Sell it, free it: In this variation, the application is sold (i.e., distributed with 

a commercial license like any commercial product) when it is ready for 

release. In a later part of the application’s life cycle, for example, if the 

software company has developed a new version of the application, the 

application’s source code (i.e., the older version) is opened. In such a 

model, the customers buying the software are paying a premium for the 

value of using the application earlier rather than later. This makes sense 



   Luthiger & Jungwirth 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

when the application introduces a functionality that is novel in the software 

market. After opening the code, the freed version can act as a “Loss Leader” 

for the application’s new version. The later versions of the application can 

be built on the code of the earlier open source versions. To make this 

possible, the open source license chosen has to be liberal, that is, it has to 

allow that derived work can be distributed under a commercial license.  

• Dual licensing: This is a business model similar to “Sell it, Free it” in so far 

as the application is available both under a commercial and an open source 

license. In this model, however, the application is simultaneously 

distributed under both license schemes. The two versions of the software 

address different target groups. The free version is intended for users that 

get familiar with the software by installing and using it and thus preparing 

the market for it. The open source license chosen for the application’s free 

version has to be restrictive (e.g., General Public License GPL). Thus, 

software companies that want to integrate the software into their own 

applications need the software version with the commercial license. The 

code base of the two versions is the same but the version with the 

commercial license delivers additional support or product guarantees (in 

addition to the right to integrate the software). The well-known MySQL 

database is a good example of this business model. 

• Widget frosting: In this model, the complementary product is hardware. 

For example, a printer manufacturer might release the drivers for their 

printer under an open source license, thus gaining a larger developer pool 

and better driver software. In the end, this improves the printers’ acceptance 

and, therefore, a better market position for the printer manufacturer. In a 

way, Linux represents the open source software to sell Linux computers,  

that is, computers preconfigured with Linux, specially designed for an 

optimal support of this operating system. In fact, some companies do 

exactly this, and consequently, sponsor the development of the Linux 

software. 

• Service enabler: In this business model, the complementary product is 

neither software nor hardware but a service that generates the company’s 

revenue stream. The company sells a service online and needs software so 

that users can access the service. If the community enhances the client 

software and makes it more user friendly or ports it to new platforms, the 

market of this service will be expanded. 

• Standard creation: If a company wants to create a technical standard it can 

safely use as a foundation to build its proprietary applications, open source 

can play a crucial role. A company sponsoring a standard faces a serious 

problem: In order for the initial work to evolve into a standard, it has to be 

taken up by other companies. How can other companies be convinced to 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

adopt this standard and to contribute to it? The company that sponsored the 

code that builds the new standard can level the playing field for potential 

competitors by open sourcing this code. This works because within an open 

source environment, the competitors do not have to fear that the initiator 

can exploit hidden features creating software that is superior to those 

created by the competitors using the same standard. Moreover, by making 

the code open source, the initiator signals that contributors can participate 

in the negotiation about the future evolution of the standard, thus providing 

incentives for other companies to join it. 

This strategy seems only possible for big companies having a long-term policy 

and the perseverance to pursue it. On the one hand, standard building needs 

several years of high investment without any return. On the other hand, to 

appropriate the gains of an established standard to an extent that exceeds the 

primary investments, the company needs a full portfolio of products and services 

that can be related to the new standard. An example of this model from practise is 

IBM’s sponsoring of the Eclipse open source project. 

The business models above described situations where the companies pay 

software developers to create open source software that constitutes the basic part 

of their business model. In other business models the company does not create 

software but profits as a free rider from open source software and the open source 

movement. However, by selling their services, they popularise open source 

software in many ways. Therefore, companies implementing such business 

models are rather symbiotically related to open source and, thus, well accepted in 

the open source movement: 

• Support sellers: The principle of this business model is to sell support for 

users of open source software. There are two versions known for this 

business model: Distributors combine different open source applications to 

assorted and tested distributions (i.e., media and hard copy documentation) 

that can be sold. The famous company Red Hat pursues this business model 

very successfully. In another variant of this business model, companies sell 

technical support for users of open source software. This covers teaching, 

counselling, system integration, and system tuning, and so forth. The 

“Support sellers” business model is subject to risk for two reasons. First, the 

entry barriers of competitors in that market are very low; therefore, stiff 

competition drives the prices down. Second, the more open source software 

becomes user friendly, stable, and well documented, the less users of open 

source software have the need to buy support for such software. 

• Mediators: The strategy of an open source mediator is to operate a 

hardware and software (e.g., collaborative tools) platform where open 



   Luthiger & Jungwirth 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

source projects can be hosted. Gains can be obtained by selling advertising 

space (banners). The “Mediator” model is characterised by a “winner take 

all” effect. The more successful a platform is in terms of the amount of 

participants, the more attractive it is for new participants. Having selected a 

certain platform, the developer’s willingness to change to another platform 

is very small, especially if the other mediator hosts lesser projects and is 

frequented by lesser users. Furthermore, a challenging mediator has few 

chances to attack the leading platform because no battle on prices is 

possible since the services are free of charge anyway. Therefore, the market 

entry barriers for other mediators are rather high. Additionally, the costs of 

operation of a full-fledged open source platform hosting thousands of 

projects and frequented by thousands of users seven days a week are high, 

whereas the opportunities to create a revenue stream are limited. It is 

questionable whether the cash receipts from selling banners on the Web 

pages exceed the operation costs. The best-known and greatest provider of 

such a mediator service is SourceForge. 

• Accessorizing: Companies pursuing this business model sell accessories 

associated with and supportive of open source software. T-shirts printed 

with the name and logo of a famous open source project or a professionally 

edited and produced documentation of open source software are examples 

of these products. O’Reilly pursues this business model and is well known 

for their various books on open source software. 

In previous years the research community studying the open source phenomenon 

made remarkable advances. The research yielded interesting results in topics as 

the open source developer’s motivations, the management of open source 

projects and the coordination of contributors, the importance of government 

funding, the consequence of software patents, and others. In addition, there are 

more and more studies available that explore the relationship between open 

source software and the commercial business area. Especially the question how 

companies can foster and leverage innovation happening beyond the company’s 

boundary for their business model has attracted interesting research (see Gabriel 

and Goldman (2002), Dahlander (2004), Bonacorsi and Rossi (2005), 

Chesbrough (2007), Garriga et al. (2011) or Mahajan and Clarysse (2013) for 

example).  

Analysing the Interplay of Different Motivations 
 

Collective action problems describe situations in which everyone in a given 

group is confronted with a certain set of choices. If every member of the group 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

chooses rationally in the economic sense, the outcome will be worse than if all 

members are willing to choose another, individually suboptimal alternative. Open 

source projects face collective action problems on different levels. The software 

produced is a public good, and therefore, the project has to deal with free riders 

in an n-person prisoner’s dilemma situation: if the project succeeds and is able to 

deliver the software, everybody benefits. However, everybody can improve his or 

her situation by not collaborating. Thus, if everybody acts rationally, the project 

will not succeed and, hence, the software will not be produced. As we mentioned 

above, this first order social dilemma can be overcome by selective incentives. 

However, the problem to coordinate the different contributors remains. This is a 

second order social dilemma because coordinating the contributors and 

reinforcing the social norms guiding the collaborative work is a public good, too. 

According to Elster (1989), social norms play an important role in overcoming 

the social dilemmas and promoting collective action. Concerning the possible 

attitudes toward social norms, Elster identified five different positions: (1) 

rational, egoistic persons are guided by the dominant strategy of non-

cooperation; (2) “Everyday Kantians,” by following Kant’s “Categorical 

Imperative,” are guided by a norm that Weber named “ethics of conviction” 

(Gesinnungsethik), thus cooperating by all means; (3) utilitarists cooperate 

conditionally, if their contribution increases the average utility; (4) elite-

cooperators contribute in an early phase of the project when there are few 

participants, whereas mass-cooperators contribute only after many other persons 

decided to cooperate. Both types share the common attribute that they have a 

private benefit not only from the results of the cooperation, but from the act of 

cooperation too; and (5) persons motivated by fairness norms contribute as soon 

as the general level of cooperation exceeds a certain threshold. 

With such a set of motivational types, it is possible to explain the dynamic of 

collective action. Everyday Kantians act as catalyst for cooperation. Persons 

motivated by fairness norms can amplify this process. The number of utilitarists 

and persons motivated by fairness norms move inversely: The more persons 

contribute, the less effect there is from a utilitarist’s contribution. Hence, their 

number is decreasing. At the same moment, an increasing number of persons 

motivated by fairness norms are induced to cooperate. The same happens for 

elite- and mass-contributors. Such a dynamic model establishes that persons who 

are differently motivated should be found in different phases of the open source 

project.  

We can roughly distinguish three different project phases: project initialisation, 

development to stability where community building also happens, and 

maintenance phase with stable releases. Concerning the project roles, the 

following differentiation is useful: the project leader (also known as “benevolent 

dictator”) is usually the project founder and has the ultimate responsibility. 

Among others, the project founder chooses the type of open source license for the 



   Luthiger & Jungwirth 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

project. Thus, the project leader normally has the right to relicense the open 

source project. The committers are contributing to the project’s code base on a 

regular basis, the lead users are actively using the application, sometimes 

contributing bug fixes, adaptations, feature wishes, and the like, and silent users 

that use only stable releases, silently quitting as soon as the application does not 

meet their requirements any longer. Even though silent users do not contribute 

any code or information to the project, they might be important because of 

positive network externalities they create. 

Using the motivational types we explained in the first section, we can depict the 

dynamics in an open source project as follows. Project initialisation is done by 

the project founder (we do not consider open source projects fully sponsored by 

companies here). The project leader may be of “everyday Kantian” type and 

moved by altruism. Stallman’s founding of the GNU project may be interpreted 

in this light2. Project founders might also be moved by fun or by the need of the 

functionality. An example of this type is Torvalds and his Linux project. In this 

case, it’s rather egoism then altruism guiding such project leaders.  

In the project’s next phase, the application’s core functionality is created. In this 

phase of the project its core community has to be built while different types of 

committers join the project. They may be utilitarists as well as elite-contributors. 

Utilitarists contribute because they are interested in the result and their 

engagement helps the project. As elite-contributors they need a selective 

advantage from cooperation. This might be the fun they enjoy while developing 

for the project or the learning effect from contributing. At this stage, the project 

leader’s attitude has to change gradually, at least if he or she has been moved by 

the fun motive originally. In order for community building to occur, he or she has 

to offer a credible project vision and challenging tasks for the developers joining 

the project. The more the project establishes, the more people join moved by 

fairness norms. Such persons are important to build community culture and 

identity. They also do the more tedious work essential to reach project stability, 

for example, project documentation, usability tests, quality and release 

management, and so on. 

The “break-even” point referred to by project stability is the stage where the 

project has gathered enough momentum to attract reputation-motivated 

contributors. At this point, the prospects are good and the project will provide 

valid signals to outsiders in the near future. Concerning the social norms, such 

contributors are rather masscontributors. At the same time, however, they need to 

be rather competitive, for that they can capture a position within the project that 

allows them to stand out from the other persons involved. It is well known from 

famous open source projects (Linux of FreeBSD, e.g.) that the entry barriers for 

new contributors are very high: Project leaders only accept codes that are 

unobjectionable and of outstanding quality. Thus, such projects indeed provide 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

credible signals for the outsiders and, therefore, are attractive for programmers 

who play the reputation game. 

The ultimate proof that an open source project is both stable and successful is its 

inclusion into a distribution. A distributor selects an open source application only 

if it adds value to his distribution on the one hand and if it is easy to install on the 

other. The first condition implies that the distributor has enough clues that silent 

users demand this application. The latter condition means that the project 

concerns not only about coding and architecture, but about documentation and 

packaging, too. However, being neatly packaged and included in a distribution 

for the delight of silent users bears the danger of stagnation for the project. 

Because of that reason, the project needs lead users so that it can evolve even in 

its stable form. Whereas silent users only work with the stable releases of an 

application, lead users download and install release candidates. Thus, they are 

acting as beta testers and provide helpful feedback to the project if they find bugs 

or deficiencies.  

Lead users are elite-cooperators. They have fun using the newest version of a 

slick tool long before others; at the same time they learn and build up valuable 

knowledge about the application, its evolution, and hidden goodies and 

limitations. An interesting point is that whereas egoistic, rational persons do not 

participate in usual collective action providing a public good, even such people 

may contribute to open source projects, as long as they can consume enough fun, 

for example. 

Which institutional arrangements are needed to foster such a dynamic of an open 

source project? 

As described above, the first phase of an open source project can be explained 

either by altruistic or egoistic programmers. The first donate their work and time 

for a good aim. Even if the motives behind their donations are unidentified and 

possibly assessed as irrational, Franck and Jungwirth (2003) argued that donators 

choose a beneficiary who is “worth” the donation, for example, by credibly 

committing himself or herself to the nondistribution constraint. Thus, while 

pursuing their targets, donators act rationally. In the context of an open source 

project, an altruistic founder who contributes the initial code base to the public 

wants that the code donated will be free and not privately appropriated by 

commercial software companies. Thus, he or she wishes that nobody can turn 

donations into private profits. The institutional safeguard for this is the Copyleft 

clause of a restrictive open source license. The Copyleft not only ensures that the 

code donated will be free, but that additional work building on this code has to be 

free, too. Therefore, a restrictive licensing scheme efficiently prevents any 

attempt to commercialise on any such code. 

A fun-seeking project founder, on the other hand, does not bother much about 

licensing. Indeed, having developed the initial code base, he or she has already 



   Luthiger & Jungwirth 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

consumed the homo ludens payoff and has, therefore, little reason to release the 

code at all. Thus, such project owners need additional incentives to do that. This 

might be that releasing code is cheap because of the Internet and because of 

platforms offering their hosting services for free. Another reason might be the 

pragmatic motive that the project needs a community when it reaches maturity. 

Considerations about the project leader’s reputation might be an additional 

motivation to release the code. In all cases, the existence of both mediums, an 

active community that can be addressed and the Internet for communication, play 

a crucial role. 

Elite-cooperators and utilitarists joining the project now may be moved by the 

fun motive. They have good chances to get satisfied, because in its early stage, 

the project might provide the most challenging tasks and there are only few 

developers competing for such tasks. To be attractive for these developers, the 

project’s entry barriers must be low. A developer who scans through project 

descriptions looking for a nice challenge does not want to wait days until he gets 

his or her contributor’s access. On the other hand, the environment has to be 

“forgiving.” If one developer delivers a code piece that breaks the application’s 

functioning in another module, this should not break down the whole project. 

Instead, it must be easy to roll back the code state and go on again from there. A 

forgiving and responsive environment can stimulate a vibrant developer 

community and lead to considerable results within a short time (see Broadwell, 

2005). 

In the later phase of the development stage, contributors enter the project who 

might be motivated rather by fairness norms than by fun. Just as for altruistic 

project leaders, for such contributors the license type is of importance. They 

donate their time and creativity to produce code, documentation, and so on and 

they wish that these donations should not be appropriated privately. Thus, a 

license having a copyleft clause provides the right incentives for such 

contributors. 

Reputation-motivated contributors entering the project in its stable stage might 

have an ambivalent attitude towards the license of the open source project. On 

the one hand, the chosen license has to guarantee the visibility of their 

contributions. On the other hand, a too restrictive license might impede the 

application’s diffusion, thus reducing both the project’s and the contributors’ 

reputations. In the end, they might prefer a liberal license as long as the project 

owner can credibly assure that he or she never re-licenses the project to a closed 

scheme. At last, it is rather the existence of lead users than a license issue that 

determines whether reputation-motivated contributors join or not. The lead users’ 

feedback drives the project to a considerable amount, whereas a project without 

lead users will stagnate and decline within a short time. Lead users on the other 

side are attracted by new features. Therefore, reputation-motivated contributors 

and lead users have a reciprocal relationship: Reputation-motivated contributors 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

implement the new features of an application, which the lead users demand, 

whereas the latter provide the feedback and stimulate activity. Therefore, lead 

users need a low-cost access to the source code or the application’s installers as 

well as a credible signal that the open source project in its actual form will 

persist. Project failure or closing its source code will devaluate the lead-users’ 

knowledge, so that uncertainty about the project’s future will detract lead users 

from the project. Thus, a project whose code is owned by only one person is 

rather unattractive, whereas a project with broad code ownership or a code being 

held by a foundation is more attractive for lead users. 

To conclude, as long as an open source project succeeds in accomplishing 

heterogeneous needs, it can attract the differently motivated contributors building 

a vibrant community required to make the project successful. To make this 

possible, both the project’s license and the infrastructure are issues. For altruistic 

contributors, the Copyleft clause is a prerequisite to attract them in the initial and 

the project’s building phases. For fun-seeking contributors, the joy of 

programming depends on the infrastructure. Programming is usually more 

enjoyable, thereby enhancing the fun factor, if the developer can focus on coding 

without being distracted by organisational issues. To accomplish this positive 

environment where the developer can concentrate on what he or she loves to do 

most, the infrastructure has to be both highly available and responsive. 

The remaining interesting question is, What happens to this arrangement when 

companies pursuing open source business models enter the scene? 

We can distinguish between one scenario where the company donates the idea 

and vision of the application as well as its initial code base and a second scenario 

where the company joins an already existing project and establishes a business 

around the application.  

In the first scenario, the company will not succeed in building up a community 

around the application until the project reaches stability. The project is not 

attractive for altruistic contributors because, even if the chosen license is 

restrictive, the company cannot credibly promise to let the source code open. On 

the other hand, the company cannot accept any code contribution from the 

outside without commanding the right to re-license the code. However, the 

company-sponsored project is of less attractiveness for the fun-motivated 

contributors, too. This is because such a project is driven by the in-house 

software developers and, thus, cannot offer challenging tasks to outside 

contributors. Nevertheless, having reached stability the company could try to 

build up a community by attracting both reputation-seekers and lead users. As we 

explained above, reputation-seekers might prefer projects released under a liberal 

license. However, implementing a dual licensing scheme might be a viable 

alternative. The commercial license makes the application fit for commercial use 

whereas the open source license with a copyleft clause guarantees the continuous 



   Luthiger & Jungwirth 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

openness of the source code, thus making the contributions visible. The same 

consideration holds for lead users. 

Another strategy for companies planning to build up an open source community 

in the project’s stable stage could be to hand over the code ownership to a 

foundation. Even this ensures the source code’s continuous openness, thus 

making the project attractive for rent-seekers and lead users. 

A company will join an already existing open source project most probably in its 

stable stage when the project has already attracted a community. For playing a 

role within the project, the company has to be accepted by the community and 

also be very careful not to scare away the community members. Such a strategy 

can be successful only if the company is very open and transparent about its 

intentions concerning the project participation. The company has to communicate 

clearly how it wants to earn money by promoting the project and at the same time 

why the openness of the code is vital for the company’s business model. In 

addition, the company has to be careful that the project stays attractive for fun 

seeking contributors. This can be achieved if the company does not “in-house” 

the application’s further development but lets the community develop and 

implement the application’s enhancements. 

 

The Pursuit of Software Quality 
 

Software quality can be considered as consisting of code quality (e.g., testability, 

simplicity, readability, self-descriptiveness) and software usability (e.g., ease of 

learning, efficiency of use, error frequency and severity, subjective satisfaction). 

According to actual surveys, open source software has caught up to proprietary 

software concerning code quality (Coverty Scan Report, 2013). Meanwhile, 

companies rank the quality as most important factor to adopt open source 

software (Skok, 2013). When it comes to usability, however, open source 

software still suffer problems (Nicholas and Twidale (2002), My Personal 

Thoughts (2012)).How can the open source software development model achieve 

code quality and how could it improve on usability? 

Pragmatic contributors want to see the improvements they added in an 

operational state and, thus, don’t bother much about code quality. Fun seekers 

may enjoy “elegant,” manageable code that is both simple and readable. 

However, the quality of their contributions depends largely on their ability and 

experience. If they are unskilled, they may experience fun producing “ugly,” 

unwieldy code as well. Therefore, it’s mainly the reputation-motivated 

contributors that drive open source projects’ code quality because their reputation 

builds heavily on the quality of their contributions. In addition, their intensive 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

interaction with lead users that act as beta testers enables them especially well for 

the pursuit of code quality. 

Why is this same reasoning not true for usability? Lead users are computer 

experts no less then the contributors to the open source project. They don’t need 

elaborate user-interfaces to fully exploit the functionality offered by the software. 

Therefore, they can’t feed back usability issues to the project. Those who are best 

suited to evaluate the application’s usability are the silent users. However, as they 

are silent, they don’t give any feedback. Is there a way to capture the silent user’s 

experience? Here’s the place where companies entering the open source area 

while pursuing a business model can add value to the open source project. At 

least if they have a history in the software business, they are in connection with 

the application’s potential and silent users and, therefore, can act as a proxy for 

them and provide valuable feedback concerning usability issues. 

These reflections show that every stakeholder can provide valuable input to the 

success of an open source project. Crowding out between contributors with 

different motivations does not necessarily exist even if companies with monetary 

intentions participate. Therefore, we assume that open source development is not 

a temporary but rather a stable phenomenon because its particular production 

context allows every participant to put in and to put out as much (or as little) as 

he or she wants. Therefore, it is an attractive forum for different interests that can 

seminally intertwine, while quality software is generated nearly as a by-product. 



 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

0   Luthiger & Jungwirth 

References 
 

Arjona Reina, L. & Robles, G. & González-Barahona, J.M. (2013). A 

Preliminary Analysis of Localization in Free Software: How Translations 

Are Performed. In E. Petrinja& G. Succi & N. Ioini & A. Sillitti (Eds.), 

Open Source Software: Quality Verification (pp. 153-167). Heidelberg: 

Springer. 

Bonacorsi, A., & Rossi, C. (2005). Intrinsic motivations and profit-oriented firms 

in open source software. Do firms practice what they preach? In M. Scotto 

& G. Succi (Eds.), Proceedings of the 1st International Conference on Open 

Source Systems, Genova (pp. 241-245). 

Broadwell, G. (2005). -Ofun. Retrieved October 10, 2005, from 

http://www.oreillynet.com/pub/wlg/7996. 

Chesbrough, Henry W. (2007). Why Companies Should Have Open Business 

Models, Retrieved July 28, 2013, from 

http://sloanreview.mit.edu/article/why-companies-should-have-open-

business-models/. 

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: 

JosseyBass. 

Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (1988). Optimal experience: 

Psychological studies of flow in consciousness. Cambridge, UK: Cambridge 

University Press. 

Coverity (2013). Coverity Scan: 2012 Open Source Report, Retrieved July 28, 

2013, from http://softwareintegrity.coverity.com/register-for-the-coverity-

2012-scan-report.html. 

Dahlander, L. (2004). Appropriating returns from open innovation processes: A 

multiple case study of small firms in open source software. Retrieved April 

10, 2006, from http://opensource.mit.edu/papers/dahlander.pdf 

Elster, J. (1989). The cement of society: A study of social order. Cambridge, UK: 

Cambridge University Press. 

Franck, E., & Jungwirth, C. (2003). Reconciling rent-seekers and donators. 

Journal of Management and Governance, 7, 401-421. 

Franck, E., Jungwirth, C., & Luthiger, B. (2005). Motivation und engagement 

beim OSS-programmieren—Eine empirische analyse. Retrieved July 18, 

2005, from 

http://www.isu.unizh.ch/fuehrung/Dokumente/WorkingPaper/36full.pdf 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

Gabriel, R. P., & Goldman, R. (2002). Open source: Beyond the fairytales. 

Retrieved  

October 4, 2003, from http://opensource.mit.edu/papers/gabrielgoldman.pdf  

Garriga, H. & Spaeth, S. & von Krogh, G. (2011). Open Source Software 

Development: Communities Impact on Public Good." In Social Computing, 

Behavioral-Cultural Modeling & Prediction, Lecture Notes in Computer 

Science (Vol. 6589, pp 69-77). Heidelberg: Springer. 

Ghosh, R. A. (2003). Copyleft and dual licensing for publicly funded software 

development. Retrieved July 6, 2004, from 

http://www.infonomics.nl/FLOSS/ papers/dual.htm 

Goldman, Ron & Richard P. Gabriel (2005). Innovation Happens Elsewhere. 

Open Source as Business Strategy. San Francisco: Morgan Kaufmann. 

Hann, I-H., Roberts, J., Slaughter, S., & Fielding, R. (2004). An empirical 

analysis of economic returns to open source participation. Retrieved July 

12, 2006, from http://www.andrew.cmu.edu/user/jroberts/Paper1.pdf 

Hannemann, A. & Klamma, R. (2013). Community Dynamics in Open Source 

Software Projects: Aging and Social Reshaping. In E. Petrinja& G. Succi & 

N. Ioini & A. Sillitti (Eds.), Open Source Software: Quality Verification 

(pp. 80-96). Heidelberg: Springer. 

Hars, A., & Ou, W. (2001). Working for free?—Motivations of participating in 

open source projects. In 34th Annual Hawaii International Conference on 

System Sciences (Vol. 7, pp. 1-7). 

Haruvy, E., Prasad, A., & Sethi, S. P. (2003). Harvesting altruism in open-source 

software development. Journal of Optimization Theory and Applications, 

118(2), 381-416. 

Hecker, F. (1999). Setting up shop: The business of open-source software. IEEE 

Software, 16(1), 45-51. 

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software 

developers. Research Policy, 32(7), 1159-1177. 

Kalla, R. (2006). Eclipse as an ecosystem. Retrieved March 3, 2006, from http:// 

www.eclipsezone.com/eclipse/forums/t64080.rhtml 

Krishnamurthy, S. (2002). Cave or community? An empirical examination of 100 

mature open source projects. FirstMonday, 6. Retrieved June 6, 2002, from 

http://www.firstmonday.org/issues/issue7_6/krishnamurthy/index.html 

Lakhani, K. R., & Wolf, R. G. (2003). Why hackers do what they do: 

Understanding motivation effort in free/open source software projects. 

Retrieved October 6,  

2003, from http://opensource.mit.edu/papers/lakhaniwolf.pdf 



 

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission      

of IGI Global is prohibited. 

Leiteritz, R. (2004). Open source-geschäftsmodelle. In R. A. Gehring & B. 

Lutterbeck (Eds.), Open source jahrbuch 2004 (pp. 139-170). Berlin: 

Lehmanns Media. 

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal 

of Industrial Economics, 52(6), 197-234. 

Luthiger, B. (2006). Spass und software-entwicklung. Zur motivation von 

opensource-programmierern. Retrieved July 13, 2006, from 

http://www.dissertationen.unizh.ch/2006/luthigerstoll/diss.pdf 

Mahajan, A. & Clarysse, B. (2013) Technological Innovation and Resource 

Bricolage in Firms: The Role of Open Source Software. In E. Petrinja& G. 

Succi & N. Ioini & A. Sillitti (Eds.), Open Source Software: Quality 

Verification (pp. 1-17). Heidelberg: Springer. 

My Personal Thoughts (2012). Why free software has poor usability, and how to 

improve it. Retrieved August 1, 2013, from 

http://www.mpt.net.nz/2012/06/why-free-software-has-poor-usability/ 

Nichols, D. M., & Twidale, M. B. (2002). Usability and open source software. 

Retrieved October 4, 2003, from http://www.cs.waikato.ac.nz/~daven/docs/ 

oss-fm.pdf 

O’Mahony, S., Cela Diaz, F., & Mamas, E. (2005). IBM and Eclipse. Harvard: 

Harvard Business School. 

Osterloh, M., Rota, S., & Kuster, B. (2002). Open source software production:  

Climbing on the shoulders of giants. Retrieved July 21, 2003, from 

http://www. 

iou.unizh.ch/orga/downloads/publikationen/osterlohrotakuster.pdf 

Raymond, E. S. (1999). The magic cauldron. Retrieved July 21, 2003, from 

http:// www.catb.org/~esr/writings/magic-cauldron/ 

Raymond, E. S. (2000). Homesteading the noosphere. Retrieved July 21, 2003, 

from http://www.catb.org/~esr/writings/homesteading/ 

Riehle, Dirk (2012). The Single-Vendor Commercial Open Source Business 

Model. In J. Becker & M.J. Shaw (Eds.), Information Systems and e-

Business Management (Vol. 10, Issue 1, pp. 5-17). Heidelberg: Springer. 

Stamelos, I., Angelis, L., Oikonomou, A., & Bleris, G. L. (2002). Code quality 

analysis in open source software development. Information Systems 

Journal, 12(1), 43-60. 

Skok, Michael J. (2013). 2013 Future of Open Source. 7th Annual Survey results, 

Retrieved July 28, 2013, from http://www.slideshare.net/mjskok/2013-

future-of-open-source-7th-annual-survey-results. 



The Chase for OSS Quality    

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission         

of IGI Global is prohibited. 

Stürmer, M. & Spaeth, S. & von Krogh, G. (2009). Extending private-collective 

Innovation: a Case Study. In R&D Management (Vol. 39, Issue 2, pp. 170-

191). Wiley. 

Toffler, A. (1980). The third wave. New York: Bantam Books. 

Torvalds, L., & Diamond, D. (2001). Just for FUN: The story of an accidental 

revolutionary. New York: Harper Collins Publishers. 

von Hippel, E., & von Krogh, G. (2002). Exploring the open source software 

phenomenon: Issues for organization science. Retrieved July 21, 2003, 

from http://opensource.mit.edu/papers/removehippelkrogh.pdf 

Weber, S. (2000). The political economy of open source software. Retrieved 

March 6, 2002, from 

http://brie.berkeley.edu/~briewww/pubs/wp/wp140.pdf 

Weber, S. (2004). The success of open source. Cambridge, MA: Harvard 

University Press. 

Weiss, D. (2005). Measuring success of open source projects using Web search 

engines. In M. Scotto & G. Succi (Eds.), Proceedings of the 1st 

International Conference on Open Source Systems, Genova (pp. 139-170). 

 

Endnotes 

1) In a study about "Fun and Software Development" (FASD), we explored the 

importance of fun that the open source developers enjoy on their open source 

engagements. The survey addressed both open source and commercial developers 

and was filled out by 1330 programmers from the open source area and by 114 

developers working in six Swiss software companies. The surveys have been 

open during about two months in early summer and autumn 2004 respectively. 

2) "I'm looking for people for whom knowing they are helping humanity is as 

important as money" (Richard Stallman on www.gnu.org/gnu/initial-

announcement.html). 


